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Introduction. Monitoring of biochemical processes is essential for fault-diagnosis, control and optimisation. Lack of appropriate sensors and inherent non-

linearity are some of the main obstacles to monitoring in biochemical processes The continuous-discrete extended Kalman filter (CD-EKF) is an appropriate tool for 

state estimation in biochemical processes. The non-linearity of the model can be efficiently tackled by the CD-EKF since the sensitivity of the dynamic model is 

updated at each sampling time via ODE integration. The focus  of this contribution is specifically on the use of pH as this is a variable that correlates well with the 

yeast catabolism (CO2 is co-produced with ethanol, leading to acidification of the medium) and that can be easily measured online.  

Conclusions 
The CD-EKF was proven as a suitable tool for monitoring of biochemical 
processes. Providing pH helps improving the prediction of the filter when 
comparing several configurations. The use of pH is of great interest for such 
processes since it is a ubiquitous measurement in biochemical processes. 

PROCESS DESCRIPTION CONTINUOUS-DISCRETE EXTENDED  
KALMAN FILTER (CD-EKF) 
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State Estimation in Fermentation of Lignocellulosic Ethanol. 
Focus on the Use of pH Measurements 

Presence of inhibitors from the hydrolysis stage, e.g. furfural, 
acetic acid, 5-hydroxymethylfurfural (5-HMF) 

Production of a commodity (cost is the most important factor) 

The presence of organic acids impacts pH 

The yeast metabolism changes with pH 

Possible contamination by lactic acid bacteria (LAB)   T
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Configuration Measurements 
Sampling rate 

(min) 

1  -Online fast-sampling  

measurements 
M, pH 20 

2  -Offline slow-sampling 
measurements 

M, Glu, Xyl, Eth 240 

3  - Combination of measurements M, Glu, Xyl, Eth, pH 240 

Variable→ Xbio Fur Ac TIC 

Configuration ↓ ·103 ·103 ·103 ·103 

Simulation 96.0 21.9 77.7 181 

1 62.0 2.90 232 173 

2 239 19.3 123 117 

3 27.2 10.9 89.0 66.9 

 

The filter was tested by simulating lactic acid bacteria contamination in the reactor 
(accounting for 0.2% w/w of the yeast biomass in the inoculum)   

Table. Estimation statistics: the mean is given for the 
absolute estimation error on selected states based on 
the normalized data.  

Figure 1.  Simulation of the process with LAB 
contamination. Selection of key states.   

Figure 2. Absolute normalized prediction error for pure 
simulation (line), configuration 1 (dots), configuration 2 
(crosses) and configuration 3 (empty circles)  

-    Conf. 1 and 2 present a severe bias, in particular 
for cell biomass and acetate  
- Cell biomass is accurately estimated by conf. 3  
- Acetate estimation is probably hindered by the 

presence of lactic acid 

RESULTS. CASE  STUDY WITH CONTAMINATION 
 


